
Demystifying Arch-hints for Model Extraction: An Attack in
Unified Memory System

Zhendong Wang
University of Texas at Dallas

Richardson, Texas, USA
Zhendong.Wang@utdallas.edu

Xiaoming Zeng
University of Texas at Dallas

Richardson, Texas, USA
Xiaoming.Zeng@utdallas.edu

Xulong Tang
University of Pittsburgh

Pittsburgh, Pennsylvania, USA
tax6@pitt.edu

Danfeng Zhang
The Pennsylvania State University

University Park, Pennsylvania, USA
zhang@cse.psu.edu

Xing Hu
Institute of Computing Technology

Beijing, China
huxing@ict.ac.cn

Yang Hu
Tsinghua University

Beijing, China
hu_yang@tsinghua.edu.cn

ABSTRACT
The deep neural network (DNN) models are deemed confi-
dential due to their unique value in expensive training efforts,
privacy-sensitive training data, and proprietary network char-
acteristics. Consequently, the model value raises incentive for
adversary to steal the model for profits, such as the represen-
tative model extraction attack. Emerging attack can leverage
timing-sensitive architecture-level events (i.e., Arch-hints)
disclosed in hardware platforms to extract DNN model layer
information accurately. In this paper, we take the first step to
uncover the root cause of such Arch-hints and summarize the
principles to identify them. We then apply these principles
to emerging Unified Memory (UM) management system and
identify three new Arch-hints caused by UM’s unique data
movement patterns. We then develop a new extraction attack,
UMProbe. We also create the first DNN benchmark suite in
UM and utilize the benchmark suite to evaluate UMProbe.
Our evaluation shows that UMProbe can extract the layer
sequence with an accuracy of 95% for almost all victim test
models, which thus calls for more attention to the DNN secu-
rity in UM system.

1. INTRODUCTION
The ever-increasing employment of machine learning (ML)

technology, especially deep neural networks (DNNs), in vari-
ous applications has tremendously improved these application
domains’ efficiency, such as computer vision [18, 20, 48],
speech recognition [37, 73], natural language processing
[8, 42], and etc. These ML and DNN models possess unique
value, which is reflected in the expensive training efforts,
privacy-sensitive training data, and proprietary network ar-
chitectures and parameters. Thus, these models are usually
deemed confidential as protected IPs. Consequently, these
confidential models make them appealing targets to the adver-
sary who intends to steal the models for profits [6]. The

adversary can explore the model execution and infer the
non-disclosed model architecture and parameters through
extraction attacks. Such attack is known as model extraction
attacks [1, 2, 5, 24, 40, 57], which not only destroys the con-
fidentiality of a model and damages the IP of the owner but
also benefits further attacks [36, 41].

ML and DNN models are mainly deployed in cloud with
publicly accessible query interfaces/APIs, known as ML-as-
a-service (MLaaS), allowing users to obtain service (e.g.,
predictive analytics) without accessing the black-box models.
Thus, the adversary can duplicate the model functionality
by exploring such attack surfaces as querying APIs [49].
Recently, with the proliferation of ML techniques in edge de-
vices, such as autonomous driving [30, 69], model extraction
attack has such effective approaches as hardware side-channel
attacks (SCAs) to pry into the model’s internal architecture.
The prevalence of edge-deployed ML models and the pursuit
of the extraction accuracy drive the adversaries to explore
new attack surfaces instead of the superficial querying mode.

Prior works [1, 24, 40] demonstrate the SCAs can capture
certain architectural events or hardware behaviors (e.g., bus
traffic through bus snooping) during model execution. These
timing-sensitive architectural events or hardware behaviors
can be leveraged by the adversary to infer the DNN layer
architectures and perform accurate DNN model extraction
attacks. We argue that such effective architectural events,
dubbed Architecture hints (Arch-hints) in this paper, present
a new Hardware/Architecture-level attack surface for the
model extraction in the edge/local deployment. Though exist-
ing work shed some light in utilizing architecture-level events
and behaviors in GPU-based model extraction [24, 40, 56],
these events are used in an ad-hoc manner. It still lacks a
systematic exploration and formal definition of such archi-
tectural behaviors, which conceals the universality of such
threat on different platforms.
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In this paper, we set out to investigate prior identified
Arch-hints, uncover the root cause of Arch-hints, and clearly
define the Arch-hints. The key insight is that we identify that
these Arch-hints essentially result from data movement in
hardware platforms during model execution. Nevertheless,
simply caused by tractable data movement during model
execution doesn’t entitle an architectural event to an Arch-
hint. The data movement during model execution must also
exhibit distinguishable and stable patterns across the DNN
model layers to make it a qualified Arch-hint.

Nowadays, the Graphics Processing Unit (GPU) has be-
come the dominant hardware to deploy DNN applications,
both in cloud and edge scenarios [11,16,33,45,59]. Also, the
considerable memory footprint of DNN-based workloads and
ever-increasing requirements of programming flexibility has
pushed the GPU memory management on the verge of a ma-
jor shift from the traditional copy-then-execute (CoE) model
to the unified memory (UM) model [4, 32, 34, 43, 54, 67, 72],
especially on these memory-limited edge platforms [4, 9, 54].
Based on the principles to define Arch-hints, we identify
three Primary Arch-hints that are specifically caused by the
data movement patterns of UM, namely page fault latency
(PFLat), page migration latency (MigLat), and page migra-
tion size (MigSize), which exhibits distinguishable patterns on
layer features and model architecture during model execution
(Sec. 3.1).

We propose a metric effectiveness_score to validate the
effectiveness of these Primary Arch-hints (Sec. 3.2) by evalu-
ating their distributions across the DNN model layers. Then,
we propose a new model extraction attack, UMProbe, which
thoroughly explores the new Arch-hints in UM system to per-
form model extraction accurately (Sec. 4). We also evaluate
how existing Arch-hints and their combinations with Primary
Arch-hints can affect the model extraction accuracy.

Lastly, we substantially modify the Darknet framework
and develop the UM implementation for a portfolio of repre-
sentative DNN benchmarks. To the best of our knowledge,
no UM implementations of DNN models has been published.
We evaluate UMProbe performance on these benchmarks and
demonstrate that UMProbe can extract victim model layer
sequence with the accuracy of 95% for almost all victim
models (Sec. 5). In summary, this paper makes following
contributions:
• We investigate prior identified Arch-hints, uncover the root

cause of these Arch-hints, and formally define the Arch-
hints. Based on the definition, we identify three primary
Arch-hints cause by the unique data movement patterns of
GPU UM system.

• We characterize multiple Arch-hints candidates in UM
system and propose a metric to quantify their effectiveness.

• The newly explored Arch-hints expose a new attack surface
in UM which has not been explored before. We develop
an extraction attack UMProbe based on that.

• We create the first DNN benchmark suite under UM to
facilitate the related researches in the community.

• We evaluate UMProbe performance using the benchmark
suite and demonstrate UMProbe’s high accuracy, calling
for attention to the DNN security in UM system.

2. EXTRACTING MODEL USING HARD-
WARE ARCHITECTURAL HINTS

2.1 Model Extraction Essential
Model extraction attacks target the ML models deployed

in the cloud with publicly accessible query interfaces/APIs,
which known as ML-as-a-Service (MLaaS) since its incep-
tion. The adversary tries to duplicate a functionally equivalent
model by frequently querying APIs for cloud-based models.
Recently, model extraction attack also extends to the ML
models served on the edge and local devices with the pro-
liferation of ML techniques in modern applications such as
autonomous driving [10, 33, 44, 46, 51, 58, 59]. In this paper,
we focus on this emerging trend and set out to explore the
model extraction attack targeting the ML deployment in edge
scenarios, which present higher threats to the models.
Attack Target: What to Steal? As a DNN model consists of
network architecture, parameters and hyper-parameters, the
adversary can target extracting architecture [24, 41], param-
eters [49], hyper-parameters [53]. Specifically, architecture
indicates layer types and connections. Parameters are weights
and biases that are learned during training process. Hyper-
parameters are the configuration variables used to control the
training process, such as learning rate, batch size, etc.

Among all these targets, the network architecture is the
most fundamental and valuable targets for a DNN model
extraction as both model parameters and hyper-parameters
can be inferred with the knowledge of the model architecture
[49, 53]. The adversary can even launch adversarial attack
based on the extracted network architecture [24, 36]. The
desired network architecture usually consists of layer number,
layer types/dimension, and layer connections. The layer
connection can include the sequential (e.g., VGG [48]) and
the non-sequential (e.g., shortcut in ResNet [18]).

2.2 Attack Surface: How to Steal?
Application/API-Level Attack Surface: Conventionally, the
adversary performs extraction attack at application/API-level.
In this attack surface, the adversary accesses the API by
querying the victim model and receives the replies. It then
leverages the input-output pairs of the victim model to de-
tect the decision boundary (i.e., the classification boundary
between different classes) of the model and subsequently du-
plicates the model [41, 49]. However, such attack needs tons
of queries and consumes significant computation resources
and time [41]. Moreover, the attack can only duplicate the
functionality of the model instead of being able to probe the
accurate internal architecture of the model [28, 41] due to
its limited access to the cloud-deployed black-box model,
which can hardly satisfy adversary’s appetite. Thus, new at-
tack surface revealing accurate information on model internal
architecture besides model functionality is needed.
Hardware/Architecture-Level Attack Surface: The pur-
suit of the extraction accuracy and the prevalence of edge-
deployed ML models drive the adversaries to explore new
attack surfaces instead of the superficial querying mode [21,
22, 57]. The hardware side-channel attacks (SCAs) have
recently drawn attention since they can provide effective ap-
proaches to pry into the model’s internal architecture. For
example, [1, 24, 40] demonstrate that SCAs can obtain infor-
mation that is closely correlated to the model internal archi-
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Figure 1: Extracting DNN models by exploring the attack
surface provided by Architectural-hints.

tecture by capturing certain architectural events and hardware
behaviors during model execution. With further data analysis,
the internal model architecture could be accurately inferred
based on these critical hardware architectural behaviors. We
observe that such hardware/architecture-level behavior leak-
age provides a new attack surface for model extraction attack.
We name this hardware/architecture-level visible information
as Architecture-hints (Arch-hints).

2.3 Arch-hints for Model Extraction
In this work, we take the first step to present an in-depth

exploration of how Arch-hints can contribute to the extraction
attacks of the edge-deployed DNN models. Specifically, we
illustrate a threat model with a GPU-based DNN inference
setup. We investigate prior identified Arch-hints, analyze
the root cause of these Arch-hints, and define the Arch-hints.
Then, we use this definition to identify two critical Arch-hints
in existing unified memory management systems, which can
lead to new model extraction attacks towards edge-deployed
DNN models.

Fig.1 shows an abstract view of how DNN model infor-
mation translates to Arch-hints during the model execution.
When the DNN application is executed in the DL framework
(e.g., Pytorch), the framework formalizes the DNN model
into a framework-level computational graph and then trans-
forms the computational graph into the runtime layer execu-
tion sequence, which is then issued to the runtime/hardware
driver (e.g., CUDA, GPU driver). The runtime/hardware
driver will launch a series of operational kernel sequence
accordingly. These kernel sequences could be revealed by
carefully chosen Arch-hints while executing in the hardware
platform (e.g., CPU-GPU heterogeneous platforms).

The adversary typically has physical access to the victim
platforms and can co-locate its spy application in the same
platforms. Thus, the adversary can capture these Arch-hints
by leveraging hardware SCAs. Prior works leverage architec-
tural behaviors in model extraction attacks based on different
platforms. Though these architectural behaviors share the
similar functionalities as Arch-hints, they are used in an ad-
hoc manner. It still lacks a systematic exploration and formal
definition of such architectural behaviors.

We summarize these Arch-hints and explore the hidden
principles behind them. We categorize these Arch-hints into
three types: a) cache-based, b) DRAM-based, c) GPU kernel-
based, as shown in Table 1. We illustrate the Arch-hints
caught in GPU platforms. For instance, [40] collects the GPU
memory write transactions and GPU unified cache throughput
as the Arch-hints. [56] utilizes the Arch-hints including the
number of GPU DRAM read/write requests and the number
of GPU texture cache requests. [24] leverages Arch-hints

Table 1: Commonly-used Arch-hints in prior works.

Attack Arch-hints Used Platform &
Mem. Model Scenario ApproachCache Memory Kernel

RenderedInsecure [40] X X GPU, CoE Cloud/Edge Predict
LeakyDNN [56] X X GPU, CoE Cloud Predict
DeepSniffer [24] X X GPU, CoE Edge Predict
DeepRecon [22] X CPU, N/A Cloud Predict
0wnNAS [21] X CPU, N/A Cloud Infer
StealNN [2] X CPU, N/A Cloud Predict

Cachetelepathy [57] X CPU, N/A Cloud Search
ReverseCNN [1] X X FPGA, N/A Cloud Search

such as memory bus traffics and kernel execution latency.
We delve into these Arch-hints and observe that these Arch-

hints are essentially resulted from the data movement that
exhibits in the hardware platforms during model execution.
For example, it is the data movement between GPU memory
and GPU cache that causes the Arch-hint of memory bus traf-
fic. The data movement between the GPU memory hierarchy
system and GPU SMs that significantly contributes to the
kernel execution latency.

While data movement is crucial to model execution exhibit-
ing Arch-hints, we further identify that not all architectural
behaviors caused by data movement can serve as effective
"Arch-hints" of being leveraged in the attack. In fact, valid
Arch-hints should be architectural events and hardware be-
haviors that present certain recognizable information for the
adversary.

Based on the analysis above, Arch-hints is defined as effec-
tive architectural events and hardware behaviors that1) being
caused by tractable data movement during model execution,
and 2) being able to exhibit recognizable information in ex-
traction attack. We will utilize the definition to explore new
Arch-hints in GPU unified memory system.

3. DEMYSTIFYING ARCH-HINTS IN UNI-
FIED MEMORY

Unified memory (UM) has gained widely adoption today
due to its efficient memory footprint and programmability. In
this section, we identify two unique Arch-hints in UM man-
agement system based on the definition proposed in Sec.2.3
and validate their effectiveness.

3.1 GPU Execution and Unified Memory
We first introduce background of GPU execution model

and unified memory management. As a representative vendor,
NVIDIA GPU consists of several Streaming Multiproces-
sors (SMs), on-chip L2 cache, and high-bandwidth DRAM.
All SMs share the unified L2 cache and the device memory
through an on-chip interconnection network. In a typical
discrete GPU setup, the GPUs are connected to the host CPU
through PCIe interconnect. Note that, the discrete GPU has
its own on-board physical memory which is physically sepa-
rated from the CPU host memory. Since the GPU memory
usually has less capacity compared to the CPU memory (e.g.,
32 GB in NVIDIA V100 [65] v.s. hundreds GB of host CPU
memory), the conventional GPU workload execution pattern
is to copy the data from CPU memory to the GPU memory
when needed, and copy the data back to CPU memory after
the computation finishes. This execution model is referred to
as copy-then-execute (CoE).
Unified Memory Model: However, CoE execution mecha-
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Figure 2: Far page fault and page migration in UM system.

nism suffers from i) frequent data copy between CPU and
GPU [4] and ii) out-of-memory problem due to limited GPU
memory capacity [13]. To address these disadvantages, Uni-
fied Memory (UM) model is introduced to ease GPU pro-
gramming by removing the necessity of explicit data copy
between the CPU and GPU [67, 68]. Specifically, UM pro-
vides the illusion of unified virtual memory space for both
CPU and GPU, and allows applications to access data on
both CPU memory and GPU memory through a single shared
pointer in the program. In CUDA programming, the API
cudaMallocManaged() is used to allocate UM space. Unlike
CoE model which transfers the data by chunks, UM employs
an on-demand paging method and transfers/migrates the data
at page-level granularity. Fig.2 shows the data processing
flow under UM model. At system level, the GPU’s page table
walk will fail if SMs try to access a physical memory page
that is not currently available in GPU local memory (i.e., the
address translation lookup misses in both TLB and page table,
steps ¬∼) and a far page fault exception is raised (step ®)
by the GPU memory management unit (MMU) [61]. These
exceptions are sent to the host CPU and handled by the driver
(step ¯). In particular, the driver first interrupts the CPU to
handle the page faults, and then migrates the requested pages
to the GPU memory (step °) [13]. We claim the system with
CoE management model as CoE system. Accordingly, UM
system indicates the system with UM management model.

3.2 Arch-hints for UM System
As discussed in Sec. 2.3, the ever-explored Arch-hints

for GPU platform target copy-then-execute (CoE) system.
Since the memory management and data movement in UM
system differ from that in CoE, we explore how this difference
impacts the Arch-hints patterns and effectiveness in model
extraction.
What Should be Effective Arch-hints: Extraction attack
essentially explores the relation between the observed Arch-
hints and the internal architectures of the victim model, and
typically utilizes a training-based approach to learn the ex-
hibited patterns and leaked information from the Arch-hints
to predict the architecture, as shown in Table 1. For exam-
ple, [40] utilizes the Arch-hints of memory write transactions
and unified cache throughput as inputs to train classification
models (e.g., KNN) to predict the victim model neuron num-
ber. [56] utilizes the Arch-hints, including the number of
DRAM read/write requests and the number of texture cache
requests, as inputs to train the LSTM model to predict differ-
ent DNN layer types.

Since the Arch-hints work as the input feature vector of the
adversary learning model, the distribution property of Arch-

hints across different layers significantly impacts the model
extraction performance (e.g., extraction accuracy, Sec. 5.3).
It is expected that the Arch-hints distribution across different
layers during model execution exhibits clear and accurate
patterns. Unfortunately, some Arch-hints distribution can
become blurred and inaccurate in UM system.
Existing Arch-hints May be Ineffective in UM: In fact,
we observe that the CoE platform-targeted Arch-hints can
get blurred in UM system during model execution, which
potentially undermines the extraction attack. Typical cases
are Arch-hints based on kernel activity or memory traffic.

For example, such a common Arch-hint as kernel latency
is closely associted with kernel size. It only consists of kernel
execution latency in CoE platform. Since the data has been
copied into GPU memory, the kernel execution can access
the data in local memory and the execution latency is stable.
During model execution, each layer shows stable latency. Due
to the different size, different layers show different but stable
latencies. The Arch-hint shows clear and accurate distribution
across different layers. In comparison, the kernel latency
includes far fault latency and migration latency besides the
execution latency in UM [67], and the execution latency can
overlap with the other two. Thus, each layer shows in-stable
and variant latency during model execution, and the Arch-
hint shows blurred and inaccurate distribution across different
layers. Consequently, the Arch-hint can become ineffective
for distinguishing different layers.

Regarding the memory bus traffic, in CoE platform, as the
data has been in GPU memory, the memory read transaction
can reveal the input size of a kernel [24]. Thus, the Arch-
hint of memory transaction is accurate. However, in UM,
besides reading data from DRAM, a kernel can migrate large
amount of data from CPU memory on demand, which will
be directly loaded into GPU cache. Thus, the Arch-hint of
memory transaction is inaccurate to reveal the kernel size.

Here, we utilize the Darknet reference model as an example
to illustrate our observation. We choose Darknet framework
in this paper for three reasons: 1) it is open source; 2) it is
written in C and CUDA, and well supported with the CUDA
UM model APIs (e.g., cudaMallocManaged(), cudaFree());
3) it provides a variety of standard pre-trained models for
objective classification and detection applications. We exe-
cute the model and collect the Arch-hints on GPU platforms
with UM system. Besides the commonly-used Arch-hints, we
explore three candidate Arch-hints specified in UM model:
far fault latency, data migration latency, and data migration
size, as shown in Table 2. For each Arch-hint, we execute the
model 10 times and collect 10 samples, and then draw the
box-plot, as shown in Fig.3.
Quantifying the Effectiveness of Arch-hints: To evaluate
how the Arch-hints effectiveness are undermined and the ex-
traction attack performance is impacted, we propose metrics
to quantify the effectiveness of each Arch-hint. Note that all
Arch-hints can be used in extraction attack theoretically, how-
ever, an effective Arch-hint can faithfully mirror the patterns
of the model execution (e.g., layer features). If the arch-hint
is ineffective, it will be more difficult for the adversary to
extract the victim model, for example, the adversary has to
pay more observations to obtain accurate results.

We mainly evaluate an Arch-hint’s effectiveness in terms
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Table 2: The collected and characterized candidate Arch-hints during DNN execution in UM system.
Platform Memory Hierarchy Network Model Collected candidate Arch-hints (8)
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Figure 3: Comprehensive characterization of distributions of different Arch-hints in UM system.

of its distribution across the NN layers. The distribution
can be measured using coefficient of variation (CoV) from
two aspects: 1) distinguishability, 2) consistency. CoV is
a statistical measure of the dispersion of a series of data
independent of the measurement unit used for the data. As
different Arch-hints have different measurement units, CoV
is useful for comparing the different Arch-hints distributions.
CoV is calculated as the ratio of the standard deviation (σ ) to
the mean (µ), as shown in Equation 1. Fig.3 shows the box-
plot of each Arch-hint, where the x-axis indicates the layers
in Reference model and the y-axis indicates the 10-samples
distribution of the Arch-hint on each layer. We detail below
how the CoV is used to measure the distinguishability and
consistency of each Arch-hint. Note that we only show early
layers of the model to save space, however, the calculation is
applied to all layers.

CoV =
σ

µ
(1)

a) Distinguishability (dis) indicates variability of the Arch-
hint value among different layers during model execution. As
different layers of a model (e.g., Conv, BN, Pool, etc.) have
different computation complexity and dimension size, it is
supposed that one Arch-hint behave differently on different
layers. distinguishability is defined as the variability of the
Arch-hint among all layers of a model and is calculated as
the CoV of the Arch-hint values of these layers, as shown
in Equation 2, where the n is total layer number. Intuitively,
the larger the CoVdis, the better the distinguishability is (i.e.,
the distinguishability positively correlates to CoVdis). Then,
the larger the Arch-hints difference on different layers is,
the easier the adversary can distinguish different layers and
explore the model internal architecture, and thus, the more
effective the Arch-hint is.

dis = variabilityArch−hint(layer1, layer2, ..., layern) (2)

b) Consistency (con) indicates the variability of each-layer
Arch-hint values among the multiple samples/executions. It
is expected that the Arch-hint shows consistent behaviors
among the multiple samples (i.e., low variability) to provide
accurate information about the model architecture, other-
wise, the Arch-hint value contain great noises, increasing the
difficulty for adversary to accurately extract the model archi-
tecture. As Equation 3 shows, the consistency is calculated
as the CoV of each-layer Arch-hint values of the multiple
samples, where i ≤ n. Accordingly, the lower the CoVcon is,
the larger the Arch-hint consistency is (i.e., the consistency
negatively correlates to CoVcon). That is, the more accurate
and less-noisy information about the model architecture that
Arch-hint can provide, the more effective the Arch-hint is.

con = variabilitylayeri
Arch−hint(sample1,sample2, ...,samplem) (3)

Integratively Evaluate the Effectiveness of Arch-hints: We
analyze above that an Arch-hint distribution property among
different layers during model execution matters to the Arch-
hint effectiveness and the Arch-hint distribution can be mea-
sured from both distinsuishability and consistency. Here, we
integrate the distinsuishability and consistency of each Arch-
hint, and define the Arch-hints Effectiveness Score (ArchES)
to evaluate the overall effectiveness of an Arch-hint.

The ArchES is defined as the ratio of distinsuishability to
consistency, that is, CoVdis/CoVcon (Sec. 5.2). On one hand,
the CoVdis is expected to be large such that the Arch-hint be-
haves significantly differently on different layers, providing
recognizable information on the model architecture. On the
other hand, the CoVcon is expected to be low such that the
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Arch-hint behaves consistently among multiple model execu-
tions, providing accurate and noise-less information of the
model architecture. The higher ArchES is, the more effective
the Arch-hint is. By utilizing the ArchES, We identify that
UM system exhibits several unique and effective Arch-hints,
which provides a new attack surface for adversary to extract
DNN model (Sec. 4).

In fact, when we discuss the effectiveness of Arch-hints,
we essentially explore whether the data movement during
model execution can exhibit distinguishable and accurate
patterns, which can be regarded as the leak of the model
architecture information, for being learned by adversary in
a given system. In conventional Copy-then-Execute (CoE)
system, such commonly-used Arch-hints as memory bus traf-
fic, kernel latency can represent the input/output data size
and computation complexity of a layer accurately and dis-
tinguish different layers. However, they become blurred in
UM system. Instead, some new Arch-hints can reveal the
data movement pattern clearly and accurately during model
execution.

4. EXTRACTING MODELS WITH ARCH-
HINTS IN UM

In this section, we show how the identified Arch-hints
based on page fault handling and on-demand data migra-
tion in UM system exhibit patterned information, revealing
layer features and DNN characteristics. We then leverage
these Arch-hints to launch an extraction attack, termed as
UMProbe. To the best of our knowledge, this is the first
model extraction attack targets unified memory system.

4.1 Threat Model and UM Arch-hints
The threat model focuses on edge security where the ad-

versary is able to physically access the victim platform. Also,
with GPU multi-instances technology [70] and GPU’s support
for the concurrency of multi-tenant inference applications in
edge scenarios [35], the adversary can share the physical
GPU platform with the victim and co-locate its application
with the victim model in the GPU.

First, the adversary can utilize the PCIe bus snooping
method to obtain the GPU kernel and data migration activities,
which has been proven with an accuracy of ∼98% in prac-
tice [62]. Specifically, the GPU activities are initialized and
terminated from the host commands, which are transferred
through the PCIe connection between GPU and host. Accord-
ingly, the far-fault handling requests and on-demand page
migration both cause PCIe traffic in UM system, as shown in
Fig.2. By capturing these critical traffic and events related to
far-fault requests and data migration [66], the adversary can
obtain the Arch-hints of Page Fault Latency (PFLat), Page
Migration Latency (MigLat) and Migration Size (MigSize) of
each kernel and layer. We consider these Arch-hints to be
Primary Arch-hints (PriArchs) in UM system.

We show that the primary Arch-hints can show strong
patterns and are effective in leaking model information for
adversary and that UMProbe is able to extract the victim DNN
architecture accurately by merely leveraging these PriArchs.

Additionally, since the adversary and victim share the
same GPU platform (e.g., the hardware cache/memory, the
open deep learning library (e.g., Darknet)), as demonstrated
in [39, 40], the adversary can co-locate its spy application
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with the victim model to obtain the victim cache properties
(e.g., L2 transactions) by leveraging cache-side channels,
which can achieve∼ 90% accuracy. UMProbe can collect the
common Arch-hints (ComArchs), such as L2 read and write
transactions to further enhance its extraction performance.
UMProbe Overview: After obtaining the Arch-hints, we
overview how PriArchs exhibit patterned information to re-
veal different layer features and manifest model architecture.

As show in Fig.4, a DNN application issues its computa-
tion graph to the Darknet framework, and Darknet forms the
graph as the connected layer sequence of the DNN architec-
ture. Then, Darknet transforms the layer sequence into the
GPU commands of runtime kernel execution sequence corre-
sponding to the layer sequence. Finally, the kernel sequence
is executed in GPU platforms, which exhibits the Arch-hints
of being learned by the adversary.

Regarding Darknet framework, it mainly loads the network
configuration file and parameters file (i.e., weights) after
receiving the DNN execution request. Essentially, Darknet
constitutes the network architecture and allocates memory
space for each layer (i.e., the IFM, OFM, Filter) in UM
system by calling the API cudaMallocManaged(). In UM
system, it is lazy allocation, indicating that the physical page
of the data populates in the host memory and the virtual
page is invalid in the GPU side (i.e., the virtual-to-physical
mapping does not exist or page valid flag is not set) after
allocation completes. Thus, when the GPU SMs execute the
layer and kennel sequentially, the SMs will encounter far-
page fault exception if the SMs access the data region for the
first time and may cause on-demand page migration.

As different layer types utilize different GPU kernels, the
PriArchs can exhibit patterned information in leaking the
different kernels characteristics and layers features. Consid-
ering the kernel sequences of different layers have a static
execution order related to the original computational graph
of a DNN model [24], the kernels characteristics and layers
features revealed by PriArchs can be learned by adversary to
predict the model layer sequence accurately.
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Table 3: Associated kernels and Arch-hints of the typical
layers in Darknet.

Layer Kernels PFLat MigLat MigSize

Conv fill_kernel, im2col_kernel,
gemmSN_kernel_nn, sgemm_xx_nn X X X

FC fill_kernel, gemmSN_kernel_tn,
sgemm_xx_tn, axpy_kernel, X X X

BN normalize_kernel, scale_bias_kernel,
add_bias_kernel

ACT activate_kernel (ReLu)

Pool forward_maxpool_kernel,
forward_avgpool_kernel X

Shortcut copy_kernel, shortcut_kernel X

4.2 New Attack Surface in UM
Essentially, UMProbe utilizes a learning-based model to

explore the relationship between the extracted Arch-hints and
victim model’s internal architectures, the input Arch-hints
containing the victim architecture information can reveal
the victim layer features. In this section, we show how the
primary Arch-hints under UM represent the different kernels’
characteristics and reveal different layer features, which thus
exposes a new attack surface in unified memory system for
the adversary to infer victim DNN architecture.

4.2.1 Primary Arch-hints Reveal Layer Features
Primary Arch-hints Vary with Layer OFM/Filter Char-
acteristics: As a DNN layer can be specified by its feature
map (i.e., IFM, OFM) and its parameters (e.g., the Filter of
a Conv layer), we observe that the primary Arch-hints of
PFLat, MigLat and MigSize are closely associated with the
feature map and parameter characteristics of a runtime layer.
Table 3 shows the most-commonly-used layer types in a DNN
model. By analyzing Darknet code, we identify the associ-
ated kernels of each layer. We will analyze how these kernels
behave during DNN execution and how the Arch-hints can
eventually reveal the kernel characteristics and layer features.

a) Conv and FC layers. The execution of a Conv layer
involves multiple kernels, such as f ill_kernel, gemm_kernel.
Here, the kernel f ill_kernel works to initialize the OFM
region of the layer (i.e., filling value 1 in the region), which is
allocated in GPU memory before the convolution operation
(i.e., the kernel gemm_kernel) begins. To initialize the region,
the GPU SMs access it for the first time after the memory
being allocated, causing far-page fault handling and PFLat.

After the OFM region is initialized, the kernels im2col_kernel
and gemm_kernel are launched to execute convolution op-
eration. During gemm_kernel execution, the GPU SMs has
to access the Filter region (i.e., storing the weights) for the
first time, causing far-page fault handling and PFLat as well.
Moreover, since the physical pages of Filter data populate in
the remote system memory at this moment, data migration is
required after the far-page fault is processed, which results in
MigLat and MigSize.

For the FC layer, it almost follows the same pattern of
Conv layer as they are both linear operation layers in a model.
Specifically, FC layer starts with the kernel f ill_kernel that
initializes the OFM region and can cause far-page fault, and
then executes the computation kernel gemmSN_kernel_tn
that accesses the Filter region and causes both far-page fault
and data migration, and ends with the kernel axpy_kernel
that again accesses OFM region and does not cause far-page
fault or migration.

Besides, although the layer implementations may vary
in runtime, like a Conv layer can be implemented with a
gemmSN_kernel_nn or a sgemm_xx_nn kernel (xx indicates
different dimension, such as 32×32, 64×32), this makes no
difference to our analysis above. These kernels always access
the OFM and Filter region and result in both far-page fault
handling and data migration.

b) BN and ACT layers. A Conv layer is typically followed
by a BN layer and then a ACT layer. As Table 3 shows, BN
layer consists of three kernels, including normalize_kernel,
scale_bias_kernel, and add_bias_kernel, and ACT layer con-
sists of activate_kernel (e.g., the most-commonly-used ReLU).
When SMs execute a BN layer, the layer takes the OFM of the
previous layer as its own IFM, indicating the OFM region has
been accessed before and the data pages have populated in the
local GPU memory. Thus, the SMs accessing the region does
not cause far-page fault or data migration. Analogously, the
ACT layer execution causes no far-page fault or migration.

Besides, some earlier DNN models, such as Alexnet, do not
include BN layer, the ACT layer directly takes the previous
Conv/FC layer OFM as its IFM. Also, modern models include
BN and ACT layers in Conv layer, known as Conv-BN-ReLu
block [27]. However, our analysis above is also applicable to
these different models variants. Namely, both BN and ACT
layers do not cause far-page fault or data migration.

c) Pooling and Shortcut layers. Pooling layer mainly in-
volves the kernel maxpool_kernel or avgpool_kernel, which
outputs the down-sampling result of the previous layer. When
SMs execute the kernel, the SMs access the OFM region of
the Pooling layer for the first time, causing far-page fault
handling and PFLat. During the down-sampling operation,
the SMs does not need other parameters [50] and does not
cause data migrate. Thus, the Pooling layer is featured with
far-page fault handling but no data migration.

Modern DNN models can be configured with more com-
plex non-sequential architecture, such as the popular ResNet
using shortcut connection. During runtime execution, the
shortcut and the main branch are actually executed in se-
quence in GPU platforms [24].

In Darknet, the shortcut layer is composed of three kernels,
including copy_kernel, shortcut_kernel, activate_kernel. The
kernel copy_kernel is first executed to copy the identity of
the IFM of the divergence point to the OFM region of shortcut
layer, then the kernel shortcut_kernel is executed to perform
addition operation in OFM region again, and finally the kernel
activate_kernel is executed. As Pooling layer does, the short-
cut layer accesses its OFM region for the first time during
kernel copy_kernel execution and causes far-fault handling,
however, it does not require additional parameters in layer
execution, thus causing no data migration.

Observation-1: During DNN model execution, different
types of layers perform differently and cause different pat-
terns on page fault handling and on-demand data migration,
as shown in Table 3. The Conv/FC layer is featured with
both PFLat, MigLat and MigSize, while the layers of BN
and ACT do not cause far-page fault or data migration. Both
the Pooling and Shortcut layers only cause far-page fault
and PFLat. Fig.5 shows examples of one Reference block
and one ResNet18 residual block, we observe their primary
Arch-hints behave as we discussed above.
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Figure 6: Arch-hints reveal Filter size in Reference model.

Primary Arch-hints Reveal Filter Size: As the Conv/FC
layer is featured with the Arch-hints of far-page fault and
data migration, and the data migration is mainly caused by
the Filter data of the layer, we explore how the primary Arch-
hints of PFLat, MigLat, MigSize can reveal the Filter Size
characteristic. As Conv layer is the dominant layer in DNN
architecture, we characterize all the Conv layers of Reference
model to show the analysis.

The Filter size of a Conv layer can be calculated as ChannelIFM
×WidthFilter × HeightFilter × ChannelOFM × 4 bytes (i.e.,
each data is a f loat type in memory). As shown in Fig.6, the
x-axis indicates the different Conv layers with the network
going deeper, and the y-axis on left-hand side indicates the
migration and Filter data size, and the y-axis on the right-
hand side indicates page fault and migration latency. We
observe that the MigSize is almost equal to the Filter Size, in-
dicating that the migration is mainly caused by the Filter data.
Also, with network going deeper, the Filter Size increases,
and MigSize increases accordingly.

Meanwhile, the MigLat and PFLat increases as well, fol-
lowing the trend of Filter Size and MigSize. Intuitively, in-
creasing MigSize causes increasing MigLat. Also, with Filter
Size increasing, the SMs have to access a larger Filter data re-
gion in the memory during layer execution, which can trigger
a larger amount of far page fault latency.

Observation-2: During Conv/FC layer execution, the data
migration mainly result from the Filter data. Thus, the mi-
gration data size well reveals the Filter data size, and the far
fault latency and migration latency both positively correlates
to Filter data size.
Primary Arch-hints Reveal Layer Features: As the pri-
mary Arch-hints of PFLat, MigLat, MigSize can reveal OFM
size and Filter size, we show how these primary Arch-hints
can leak layer features and manifest model architecture dur-
ing model execution.

We characterize the Arch-hints PFLat, MigLat, MigSize
of each layer (e.g., Conv, Pool, FC) during Reference model
execution, as shown in Fig.7. The x-axis in Fig.7 indicates
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Figure 7: The Arch-hints of different blocks in Reference.

different blocks as the network going deeper, and the y-axis
on the left hand indicates the latency while the right hand
indicates the data size.

We observe that as the network goes deeper, the scale of
PFLat, MigLat, MigSize increases significantly, especially for
the Conv layer. The different scales can identify the different
blocks. Second, the PFLat, MigLat, MigSize of a Conv layer
are usually much larger than other types of layers (e.g., Pool,
the last layer) within the same block. This is because the
large Filter size and feature map size in a Conv layer cause
large amounts of far page fault and data migration. Third, the
BN layer and ACT layer (i.e., ReLU) exhibit quite similar
execution features as they both do not cause far page fault
or migration, resulting in difficulties for the adversary to
accurately distinguish them.

Observation-3: The primary Arch-hints of PFLat, MigLat,
MigSize can reveal different types of layers and blocks dur-
ing model execution by identifying the layer’s feature map
and Filter characteristics and leak information on the model
internal architecture. Thus, these Arch-hints exposes a new
attack surface in UM system for extraction attack, which has
not been explored before.
Common Arch-hints Further Helps: We analyze above
the primary Arch-hints of PFLat, MigLat, MigSize can leak
the layer information during model execution. However,
some adjacent layers, like BN and ACT, do not cause PFLat,
MigLat, MigSize, and thus exhibit similar execution features,
causing difficulties to UMProbe. Although UMProbe can
utilize DNN model design philosophy (i.e., the empiric to
follow a BN and ACT layer after Conv layer) to infer these
layers, we consider UMProbe exploring other Arch-hints in
UM system to conquer the difficulties.

As we analyzed in Sec. 3, the L2 read/write transaction
obtains a high ArES and is considered effective in extraction
attack. Thus, UMProbe utilizes the common Arch-hints of
L2 read/write transaction in the attack besides the primary
Arch-hints of PFLat, MigLat, MigSize. Fig.3a and 3c shows
the Arch-hint of L2 write/read transaction shows noticeable
difference on the BN and ACT layers, indicating UMProbe
can utilize the Arch-hints to further improve its extraction
accuracy (Sec. 5.3).

4.2.2 Learning-based Extraction Attack
As We learned that the Arch-hints in UM system, espe-

cially the primary Arch-hints, can reveal layer features and
leak model information during model execution, we will
show how UMProbe can extract and identify victim model
by learning these Arch-hints. Since model architecture, es-
pecially model layer sequence, is the most fundamental one
among DNN model’s properties and can be used to infer other
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parameters [23, 24, 24, 36, 41, 49, 53], UMProbe is designed
to identify the model architecture as the first step to extract
the model.
Attack Methodology: UMProbe adopts the Connectionist
Temporal Classification (CTC) [14] model to predict victim
layer sequence including layer number, types and connection,
which has been proven effective in [24]. CTC is a sequence-
to-sequence model, and it can be trained by minimizing the
difference between the ground-truth layer sequence L∗ and
predicted layer sequence L, and outputs a layer sequence
which is as close to the ground-truth as possible.

Fig.8 shows the specific attack methodology that includes 5
steps. ¬ The kernel sequence is composed of multiple kernels
featured with their own Arch-hints Vectors Xi (i.e., <PFLat,
MigLat, MigSize, L2 read, L2 write>).  For the ith kernel,
its Arch-hints Xi can reveal the characteristics of the kernel.
Then, UMProbe conducts the ith kernel classification based
on Xi by using a LSTM-classification model [24] and ® will
output a probability distribution Ki of which type of layer(i.e.,
Conv, ReLU, BN, Pool, etc.) those kernels belong to. ¯
UMProbe utilizes the CTC model to estimate the conditional
probability with the distribution of prior kernels(i.e., K1, K2,
... Ki). Then UMProbe outputs all of the kernel sequence
candidates here, such as (CV-CV-BN-Re), (CV-BN-Re-PL),
etc. ° The CTC decoder eventually recognize the kernel
sequence with the largest conditional possibility as the output
L by utilizing greedy search and de-duplication techniques
[60]. Table 3 shows each layer is associated with their own
specific kernels, and Fig.4 shows a DNN layer sequence
that can be mapped to the kernel sequence in runtime, thus,
UMProbe can successfully predict the layer sequence by
extracting and identifying the kernel sequence.

With layer sequence predicted, we then show how the
layer dimension is estimated, though [24] demonstrates that
the layer dimension is less important than layer sequence
in extraction attack. Specifically, [24] provides a method
utilizing the DRAM read transaction to estimate the input
and output size of ReLU layer and other layers. Similarly,
UMProbe utilizes L2 read transaction to estimate the input
and output size of different layers by following the same
method. Regarding GPU memory hierarchy, L2 cache read
transaction can provide more accurate information to estimate
the input and output size during kernel execution as the L2
cache cannot be bypassed in kernel transaction. Moreover,

Table 4: Effectiveness Evaluation of Arch-hints in UM.

Arch-hints Distinguishability/CoVdis Consistency/CoVcon ArES
L2 write trans. 1.55 0.0017 873.41
DRAM write trans. 1.56 0.22 6.84
L2 read trans. 1.71 0.46 3.72
DRAM read trans. 1.34 0.51 2.62
Kernel latency 1.81 0.11 16.59
Far fault latency 2.24 0.095 23.38
Migration latency 3.58 0.012 293.84
Migration size 3.55 0.0081 437.14

as we analyzed in Sec. 4.2 that the MigSize can reveal the
Filter size of a layer (i.e., Conv/FC). That is, in UM system,
the new attack surface, especially the Arch-hint of MigSize,
has a advantage in estimating the Filter size of a layer.

5. EVALUATION
5.1 Experimental Setup
Platform: All sample collection, model training and valida-
tion, and attack evaluation are conducted on NVIDIA Titan
RTX GPU platform. The DNN models are implemented in
Darknet framework, with CUDA 10.0. We use the GPU per-
formance counter [64] to emulate bus snooping for page fault
latency, page migration latency, page migration size and L2
cache read/write transaction information collection.
Benchmarks: We use multiple pre-trained DNNs on Darknet
framework [71]. The benchmark includes Sequential models
(Alexnet, VGG-16, Reference, Tiny Darknet, and Extraction
[71]) and Non-Sequential models (Resnet18, Resnet50, and
Resnet101 [18]). It is important to emphasize that, all of the
aforementioned models do not have specific corresponding
UM implementations in public domain. We substantially
modify the Darknet framework to support its execution in
UM system using CUDA APIs cudaMallocManaged() and
cudaFree().
Model training and deployment: Essentially, UMProbe
contains a LSTM+CTC learning model to extract the victim
DNN architecture. To train UMProbe, we randomly generate
enough numbers of DNN models (i.e., random layer number,
types, connections and dimensions) with both sequential and
non-sequential connections, and utilize them as white-box
models. We then execute the DNN models and collect the
kernel execution samples (i.e., the Arch-hints of DNN ker-
nel sequence) as the input to the model. After model being
trained, we test UMProbe on the representative DNN bench-
marks. These DNNs work as black-box models to UMProbe,
and UMProbe predicts their model architectures by analyzing
their Arch-hints exposed.

We collect five types of samples to train/test UMProbe,
as shown in Table 5, that is, samples using Arch-hints of 1)
PFLat, 2) MigSize, 3) PFLat, MigLat, MigSize (PriArchs),
4) L2 read transaction, L2 write transaction (ComArchs),
5) PFLat, MigLat, MigSize, L2 read transaction, L2 write
transaction (AllArchs). As different Arch-hints represent dif-
ferent DNN model characteristics, we evaluate the UMProbe
performance by using different Arch-hints (Sec. 5.3).

5.2 Effectiveness of Different Arch-hints
Metric: As characterized in Sec. 3, we define Arch-hints
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Effectiveness Score (ArchES) to quantify the effectiveness of
each Arch-hint in UM system in terms of distinguishability
(CoVdis) and consistency (CoVcon), as shown in Equation 4.
Regarding the Arch-hint, the higher the distinguishability is
(i.e., higher CoVdis) and the stronger the consistency is (i.e.,
lower CoVcon), the more effective the Arch-hint is.

e f f ectiveness_score =
CoVdistinsuishability

CoVconsistency
=

CoVdis

CoVcon
(4)

Evaluation: We then calculate the ArchES of each Arch-
hint as well as their dis and con factors, as shown in Table 4.
We observe that the Arch-hints of L2 write trans, migration
latency and size gain much higher ArchES than the other
Arch-hints due to the high dis and strong con. When com-
paring the L2 transaction to the DRAM transaction, we find
that their dis is competitive, however, the con of L2 write
transaction is significantly lower than that of DRAM write
transaction. Because of the limited capacity of L2 cache, the
data is eventually written back to the DRAM. Thus, the total
amount of L2 write transaction is typically capped by the L2
cache capacity and shows strong consistency. In comparison,
the DRAM capacity is much larger, and there is little limit
to the DRAM write transaction, thus, DRAM write transac-
tion shows much more inconsistency. Accordingly, the L2
read transaction shows more consistency than DRAM read
transaction.

Then, taking the remaining Arch-hints into consideration,
the migration latency and migration size obviously outper-
form the other two in terms of ArchES. The kernel latency
shows the lowest ArchES compared to far fault latency due to
its low dis (i.e., low CoVcon). This is because, in UM system,
the kernel latency is composed of execution latency, far fault
latency and migration latency, and the execution latency can
overlap wit far fault latency, causing overall kernel latency
variable [67]. Thus, the kernel latency can get blurred in
multiple execution and the Arch-hint of far fault latency can
be more effective.

To summarize, we learned that in UM system the Arch-
hints of L2 write transaction, L2 read transaction, far fault
latency, and migration latency and size show greater effective-
ness in terms of ArchES compared to the other Arch-hints. Es-
sentially, ArchES measures the information leakage from an
Arch-hint in UM system by examining the relation between
the Arch-hints pattern (i.e., distinguishability, consistency)
and the victim model internal architectures. As we analyze in
Sec. 4.2.1, the far page fault latency is closely associated with
the OFM size of almost all layers, the migration latency and
size can reveal the Filter size of a layer (i.e., Conv/FC). As
the three primary Arch-hints in UM provide an ever explored
attack surface for adversary, we will show below that they ex-
hibit sufficient information for UMProbe to extract the model
architecture. Then, the common Arch-hints of L2 read and
write transaction can further enhance UMProbe performance
by providing additional information to identify such blurring
layers as BN and ACT layer.

5.3 UMProbe Performance
Metric: As UMProbe targets extracting the victim DNN
model layer sequence (i.e., layer number, layer types and
layer connection), we measure the performance of UMProbe’s

Table 5: Samples using different Arch-hints.
Sample s1 s2 s3 s4 s5

Arch-hints PFLat MigSize PriArchs ComArchs AllArchs

S1 S2 S3 S4 S5
0.0

0.2

0.4

0.6

0.8

1.0

LS
A(

%)

 Seq nets  Non-Seq nets  All nets

Figure 9: Avg LSA of UMProbe on different models.
DNN extraction ability by quantifying the extracted layer se-
quence accuracy. We define the extracted Layer Sequence
Accuracy (LSA) as follows,

LSA = 1− ED(L,L∗)
|L∗|

(5)

where ED(L,L∗) is the edited distance between extracted
layer sequence L and ground-truth layer sequence L∗ (i.e. the
minimum number of insertions, substitutions, or deletions
required to change L into L∗) [3], while ED(L,L∗)

/
|L∗| indi-

cates the extracted layer sequence error rate. |L∗| is the length
of L∗, thus, the larger LSA is, the less the difference between
L and L∗, and the more accurate UMProbe extraction.
Evaluation: As UMProbe works by leveraging different
Arch-hints samples (see Table 5), different Arch-hints are
able to reveal different DNN layer features and model char-
acteristics, and make a great difference to UMProbe perfor-
mance in terms of LSA. We measure UMProbe performance
on DNN benchmarks, and further validate the importance
and effectiveness of the Arch-hints in UM system.

First, we calculate the the average LSA of UMProbe using
different Arch-hints on three kinds of networks (i.e., Seq nets,
Non-Seq nets and all nets), as shown in Fig.9. We observe
that the LSA of UMProbe by using either s1 or s1 is around
50%, indicating that UMProbe can effectively extract par-
tial DNN layer sequence, though its performance is low. As
we analyzed in Sec. 4.2.1, all layers except BN/ACT can
cause far page fault and exhibit PFLat, which is closely as-
sociated with the OFM size of the layer, while the MigSize
closely correlates to the Filter size of a layer (i.e., the domi-
nant Conv/FC). Thus, both Arch-hints can provide effective
information for adversary to infer the DNN layer sequence,
but the amount of information is limited.

Then, we learned that, by using s3 of PriArchs (i.e., PFLat,
MigLat, MigSize), the UMProbe performance is obviously
improved. As we analyzed above, PFLat is closely associated
with a layer OFM size while MigLat/MigSize can reveal the
Filter size of a layer, indicating the Arch-hints can provide
complementary information about the DNN architecture. By
using this three primary Arch-hints, UMProbe can effectively
extract most layer sequence information.

Meanwhile, by using s4 of ComArchs, the UMProbe per-
formance is also improved, and is comparative to UMProbe
using s3. Regarding GPU memory hierarchy, the L2 cache
is shared by all GPU SMs, while a kernel can be dispatched
to multiple SMs and the kernel typically cannot bypass L2
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Figure 10: LSA of benchmarks using different Arch-hints.

cache to read/write data from DRAM. Thus, the L2 transac-
tion provides relatively complete and highly distinguishable
trace of data activities from different layer (i.e., input and
output), as Table 4 shows the high ArchES of the Arch-hints.
Thus, UMProbe performance using ComArchs is high as
well. Based on the analysis above, we can say that as the
new attack surface in UM system, the PriArchs provide suffi-
cient information for UMProbe to effectively extract most of
victim layer sequence, though UMProbe performance is not
high enough.

Finally, by using s5, the average LSA of UMProbe on Seq,
Non-Seq, and all networks can reach around 95%, indicat-
ing that UMProbe can effectively extract almost all layer
sequence. As we analyzed above, the PriArchs provide suffi-
cient information for UMProbe to successfully extract layer
sequence. Now, given that the ComArchs can provide addi-
tional information to further identify such blurring layers as
BN/ACT, which hardly causes page fault and data migration,
UMProbe performance can be further improved with the help
of ComArchs.

Besides, we calculate UMProbe LSA on each DNN bench-
mark, as shown in Fig.10. We observe UMProbe performance
on each DNN model that follows the same track of analysis
above. Basically, PFLat reveals the OFM characteristics and
MigSize reveals the Filter characteristics, either of them pro-
vides limited information for UMProbe (∼ 50% accuracy).
Then, the three primary Arch-hints together can reveal a
layer’s features more completely, and UMProbe performance
can be significantly improved. Especially, for the small and
neat networks (e.g., Alexnet, Reference, Tiny and VGG),
UMProbe performance is high (≥ 80%), indicating that the
primary Arch-hints are able to reveal such model architecture
thoroughly. Later, by using all Arch-hints, UMProbe can
achieve very high performance on all models (≥ 90%).

To summarize, we conclude that the new attack surface
provided by the Arch-hints based on far page fault and data
migration provides sufficiently effective clues for the adver-
sary to extract most victim model architecture information
in UM system and the extraction attack can achieve a high
performance. Also, with Arch-hints providing additional in-
formation, the attack surface can be extended and the attack
performance can be enhanced. In fact, such an attack surface
has never been explored before and is worth attention.

6. RELATED WORK
Unified Memory: GPU Unified Memory (UM) arises as
it effectively eliminates the need for manual data migra-

tion, reducing programmer effort and enabling GPU memory
oversubscription compared to the Copy-then-Execute sys-
tem. However, the far fault handling and on demand migra-
tion can significantly impact the application performance,
and many prior works focusing on performance optimiza-
tion [12, 13, 17, 31, 47, 54, 55, 61] have been proposed. [61]
proposes a software page prefetcher to further utilize PCIe
bus bandwidth and hide page migration overheads. [31] com-
prehensively characterizes the inefficiency of far fault han-
dling under UM model and proposes batch-aware UM man-
agement. [13] investigates the prefeching and eviction poli-
cies under UM model and proposes new locality-aware pre-
eviction policies to reduce the performance overhead. How-
ever, this paper first explores the insecure communication
pattern exposed by the far fault handling and on-demand mi-
gration under UM model and exploits this attack surface in
UM system for stealing DNN models.
Model Extraction Attack: The extraction attack mainly tar-
gets the ML models deployed in cloud with publicly acces-
sible query inter-faces/APIs, and the adversary can dupli-
cate the functionality of the model by frequently querying
APIs [41, 49]. Then, some works consider utilizing side-
channel information to benefit the attacks [1, 21, 22, 57], such
as cache-side channel. Recently, with ML models increas-
ingly deployed in edge/local devices [33,51,59], the adversary
utilizes physical or local side-channels to obtain architecture-
level information leakage to accurately extract the model
architecture. [40] utilizes hardware counters to predict the
NN neuron number. [56] monitors the CUPTI events in GPU
platforms to infer different DNN layer operations. [1] observe
the memory access patterns to search for the possible DNN
structures in FPGAs. [24] collects the kernel latency, DRAM
read and write volume, etc., to extract the DNN model ar-
chitectures. However, none of them explores the meanings
and patterns behind architecture information or proposes new
architecture hints and attack surface for extraction attack in
UM system.
Mitigation Countermeasures: As the new attack surface
relies on insecure communication pattern between GPU and
CPU on PCIe bus, one potential defense approach is to ob-
fuscate the communication pattern on PCIe bus. As GPU
runtime process the far page fault first and then migrate data
on demand, the runtime can dynamically obfuscate the re-
quests, like postpone or even reorder some far fault requests.
Also, the runtime/system can support transmitting dummy
data to cover the real traffic, for example, the migrated data
can be split/padded into a fixed size and be sent at fixed
rate [25]. This way, the PCIe transmission and leaky commu-
nication pattern in UM system can obfuscated and interfered.
However, such approaches will unavoidably incur significant
PCIe bandwidth overhead and performance degradation.

Besides, GPU trust execution environment (TEE) can be
considered to mitigate or eliminate co-location side channel
[26, 38, 52]. These TEE disallows different tenants to share
the underlying hardware or execute concurrently, which can
prevent the adversary to observe the victim activities through
the performance counter, etc. Similarly, this method can
negatively impact the GPU performance and is non-trivial to
be deployed in practice.
7. CONCLUSION
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Emerging extraction attack can leverage architecture-level
events (i.e., Arch-hints) in hardware platforms to extract DNN
model layer information accurately. In this paper, we uncover
the root cause of such Arch-hints and summarize the prin-
ciples to identify them. We then apply these principles to
emerging Unified Memory (UM) management system, iden-
tify three new Arch-hints, and develop a new extraction attack,
UMProbe. We also create the first DNN benchmark suite in
UM and utilize the benchmark suite to evaluate UMProbe.
Evaluation shows UMProbe can extract the layer sequence
with an accuracy of 95% for almost all victim test models,
calling for more attention to the DNN security in UM system.
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(2020). How to 0wn NAS in your spare time. arXiv preprint
arXiv:2002.06776.

[22] Hong, S., Davinroy, M., Kaya, Y., Locke, S. N., Rackow, I., Kulda, K.,
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